pilottai

PilottAI Framework

PilottAI Framework Logo

Build Intelligent Multi-Agent Systems with Python

Scale your AI applications with orchestrated autonomous agents

[![PyPI version](https://badge.fury.io/py/pilott.svg)](https://badge.fury.io/py/pilott) [![Python 3.9+](https://img.shields.io/badge/python-3.9+-blue.svg)](https://www.python.org/downloads/) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![Documentation Status](https://readthedocs.org/projects/pilottai/badge/?version=latest)](https://pilottai.readthedocs.io) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)

Overview

PilottAI is a Python framework for building autonomous multi-agent systems with advanced orchestration capabilities. It provides enterprise-ready features for building scalable AI applications.

Key Features

Installation

pip install pilott

Quick Start

from pilott import Serve
from pilott.core import AgentConfig, AgentRole, LLMConfig

# Configure LLM
llm_config = LLMConfig(
    model_name="gpt-4",
    provider="openai",
    api_key="your-api-key"
)

# Setup agent configuration
config = AgentConfig(
    role="processor",
    role_type=AgentRole.WORKER,
    goal="Process documents efficiently",
    description="Document processing worker",
    max_queue_size=100
)

async def main():
    # Initialize system
    pilott = Serve(name="DocumentProcessor")
    
    try:
        # Start system
        await pilott.start()
        
        # Add agent
        agent = await pilott.add_agent(
            agent_type="processor",
            config=config,
            llm_config=llm_config
        )
        
        # Process document
        result = await pilott.execute_task({
            "type": "process_document",
            "file_path": "document.pdf"
        })
        
        print(f"Processing result: {result}")
        
    finally:
        await pilott.stop()

if __name__ == "__main__":
    import asyncio
    asyncio.run(main())

Documentation

Visit our documentation for:

Example Use Cases

Advanced Features

Memory Management

# Store and retrieve context
await agent.enhanced_memory.store_semantic(
    text="Important information",
    metadata={"type": "research"}
)

Load Balancing

# Configure load balancing
config = LoadBalancerConfig(
    check_interval=30,
    overload_threshold=0.8
)

Fault Tolerance

# Configure fault tolerance
config = FaultToleranceConfig(
    recovery_attempts=3,
    heartbeat_timeout=60
)

Project Structure

pilott/
├── core/            # Core framework components
├── agents/          # Agent implementations
├── memory/          # Memory management
├── orchestration/   # System orchestration
├── tools/           # Tool integrations
└── utils/           # Utility functions

Contributing

We welcome contributions! See our Contributing Guide for details on:

Support

License

PilottAI is MIT licensed. See LICENSE for details.


Built with ❤️ by the PilottAI Team